Какие бывают вкладыши в двигателе?

Содержание

Провернуло вкладыши шатунные

Какие бывают вкладыши в двигателе?

Иногда водители ощущают характерное стучание во время работы двигателя. Двигатель по-прежнему работает, но с стуком. Причиной этого может являться проворачивание шатунных вкладышей.

статьи:

Что значит провернуло вкладыши

В конструкции двигателя есть такие сопряженные детали, как вкладыши и шейки коленчатого вала. Для шатунных шеек предназначены шатунные вкладыши, для коренных — коренные. Коленвал — это деталь, которая берет на себя большие нагрузки и которая сажается на подшипники, только это не подшипники качения, а скольжения. Эти подшипники скольжения называются вкладышами. Хотя вкладыши — это наиважнейшая деталь в сопряженных парах деталей, но конструкция их довольна проста.

На фото показаны изношенные вкладыши шатуна

  • олово;
  • медь;
  • свинец;
  • алюминиевые сплав.

Рабочая поверхность вкладышей наносят специальное антифрикционное покрытие.

На простом языке неполадки связанные с коренными и шатунными вкладышами называют проворачивнием, «провернуло вкладыши» или «что-то стучит внизу двигателя».

Если провернуло шатунные вкладыши, то в этом случае ремонт сделать легче, чем, если бы провернуло коренные вкладыши. Такие неполадки и поломки считаются серьезными. В основном, это происходит по причине использование некачественно моторного масла. Подробный расклад по расшифровке маркировки моторных масел должен знать каждый водитель, поскольку там есть очень много нюансов, которые вы раньше не знали.

Отличие коренных вкладышей от шатунных

Шатунные вкладыши устанавливаются в постели между шатуном и шатунной шейкой коленчатого вала. Коренные вкладыши устанавливаются на коренные шейки коленвала ДВС.

Коренные от шатунных отличаются диаметрами и толщинами пластин. Коренные толще и в них есть масляные каналы через которые масло от коренного вала подается к шатунным подшипникам.

Почему проворачивает шатунный вкладыш

Вкладыши шатунов и коленвала ДВС — это подшипники скольжения, которые должны обильно смазываться, чтобы выполнять свои функции. Шейки коленвала и оверстия шатуна сидят плотно без люфта и зазоров, но благодаря смазке сила трения сопряженных пар минимальна.

Проворот вкладышей шатуна и коленчатого вала требует немедленного ремонта. Нельзя эксплуатировать автомобиль с такими поломками в двигателе, потому как может произойти дальнейшее разрушение деталей или узлов ДВС. Эту поломку определяют на слух, слышен стук коленвала и шатуна.

Вкладыши, они же подшипники скольжения сажают в места, которые называют постелями вкладышей. Вкладыши должны быть зафиксированы. Если на вкладышах есть отверстия, они должны быть совмещены с отверстиями сопряженной детали.

А известно ли вам, что за проходимость и управляемость автомобилем отвечает вид блокировки и перенатяг дифференциала.

Основные причины проворота вкладышей:

  • не достаточно были зафиксированы вкладыши;
  • вкладыши прикипели.

Коленчатый вал вращается относительно вкладышей, поверхность которых защищена антифрикционным (противотрущимся) материалом. Чтобы вкладыши не смещались и не проворачивались вместе с коленвалом ДВС, они удерживаются специальными усиками. Также они устанавливаются в натяжку, которые рассчитали заводы-изготовители.

Чем больше нагрузка на коленвал, тем меньше создается масляная пленка (прослойка, подушка). А если еще присутствует превышенная вибрация, то происходит разрушение масляного защитного слоя и резко повышается сила трения, из-за чего вкладышу все труднее и труднее удержаться в постели, усик предназначенный для защиты от проворота не может удерживать вкладыш.

Как правило, причиной проворачивания вкладышей является отсутствие смазки. Для смазки на коренных вкладышах предусмотрены отверстия, на шатунных — пазы. Если эти каналы для подачи масла закупорены, отверстия и каналы полностью или частично забиты, сила трения трущихся деталей повышается, появляется эффект масляного голодания. Из-за отсутствия смазки сильно нагреваются пара вкладыш-коленвал. Во время нагрева трущиеся детали прилипают друг к другу. После такой сварки начинают проворачиваться вкладыши.

Что делать, если провернуло шатунный вкладыш

При обнаружении симптомов проворота вкладышей следует доехать до автосервиса или до своего гаража, если собираетесь заменить их своими руками, а лучше заглушить двигатель и транспортировать на буксире или эвакуатором, если есть возможность.

Проворот вкладышей шатунных менее затратный и трудоемкий, если прекратить эксплуатацию при обнаружении стуков, чем проворот вкладышей коренных. Если не обращали внимание на посторонние стуки в двигателе и продолжали ездить в таком состоянии, то, возможно, провернутые шатунные вкладыши приведут к дорогостоящему капитальному ремонту двигателя.

В основном, если провернуло один шатунный вкладыш, то его меняют на новый и, на этом ремонт закончен. В таком случае, так как сам шатун не менялся, ресурс отремонтированной пары шейка коленвала-шатун будет меньше положенного.

Желательной работой по замене шатунного вкладыша является и замена соответствующего шатуна. Часто бывает, что, если провернуло шатунный вкладыш, то ломается замок шатуна.

Оптимально-эффективным ремонтом с проблемами вкладышей считается расточка коленчатого вала и замена вкладышей с шатунами. Шейка коленвала на котором сидел провернутый вкладыш имеет задиры, царапины. Поэтому надо проводить шлифовку коленвала. Все шатунные вкладыши имеют одинаковые размеры и полностью взаимозаменяемы между собой.

Порядок замены шатунных вкладышей в гаражных условиях:

  1. Устанавливаем автомобиль над ямой.
  2. Ставим противооткаты (башмаки).
  3. Открутить и убрать выхлопные штаны.
  4. Если конструкцией двигателя предусмотрены различные подвесы для коробки передач, то и их откручиваем и снимаем.
  5. Демонтируем поддон масляного картера. Удобно и быстро использовать для этого дела шуруповерт.
  6. Откручиваем маслоприемник.
  7. Отворачиваем крепления моста, убираем его.
  8. Теперь есть доступ к коленчатому валу ДВС.

    Поднимает домкратом переднее колесо и на установленной 4 или 5 передаче крутим поднятое колесо.

  9. Крутим колесо и выставляем шатуны не строго вертикально, а под углом.
  10. Далее, откручиваем гайки крепления шатунов и снимает постель, в котором посажен с натяжкой шатунный вкладыш.
  11. Снимаем второй вкладыш с шатунной шейки коленвала (ниже, на видео хорошо видно, как это делать).
  12. Смотрим на снятые подшипники скольжения. Провернутые подшипники имеют царапины и механические повреждения, часто их сплющивает.

  13. Протираем посадочные места постелей для шатунных вкладышей и устанавливаем в них новые вкладыши.
  14. Чтобы нижнюю постель не перепутать (так как его можно повернуть на 180 градусов и установить в другом положении) на торцы выбиты половинчатые цифры (часть цифры на торце постели, вторая половина цифры на шатуне). Также выбиты цифры на нижней части постели, по которым можно сравнить, куда смотрят цифры на других постелях.
  15. Делаем монтаж. Закручиваем гайки постели динамометрическим ключом (перетягивать и не дотягивать нельзя).

    Для разных двигателей — разные моменты затяжек. Существуют таблицы с моментами затяжек для контретного двигателя конкретных деталей.

Замена вкладышей без разборки, если нет износа коленвала

Посмотрев, это 8-ми минутное видео по замене шатунных вкладышей, даже новичок может разобраться с таким ремонтом. Поэтому, рекомендую, не поленитесь и посмотрите это видео.

Из этого видео, вы узнаете, что для снятия коренных вкладышей не обязательно снимать коленвал. При помощи нехитрых манипуляций легко можно проверить состояние коренных подшипников и, если они изношены, заменить их не разбирая полностью двигатель.

Как менять шатунные и коренные вкладыши показаны на примере автомобиля Хонда Аккорд.

Источник: https://autostuk.ru/provernulo-vkladyshi-shatunnye.html

Вкладыши для двигателя – детали критические

Какие бывают вкладыши в двигателе?

На первый взгляд вкладыши – это просто штамповка. Но впечатление обманчиво: подшипники скольжения представляют собой высокотехнологические изделия из сложного композитного материала, имеющие специфическую геометрию и точные размеры. И, что немаловажно – они являются критическими деталями двигателя, отказ которых ведет к его остановке и очень дорогому ремонту…

Функции подшипников

Вращающиеся компоненты двигателей внутреннего сгорания оборудованы подшипниками скольжения, которые выполняют разные функции:

• коренные вкладыши поддерживают коленчатый вал и обеспечивают его вращение. Устанавливаются в блоке цилиндров. Каждый вкладыш состоит из верхней и нижней половин. На внутренней поверхности верхней половины, как правило, есть канавка для смазки и отверстие для подачи масла.

• шатунные вкладыши обеспечивают вращение шейки шатуна, который, в свою очередь, вращает коленвал. Устанавливаются в нижней головке шатуна.

• упорные кольца предотвращают осевое движение вала. Часто упорные кольца являются частью одного из коренных вкладышей – такие комбинированные подшипники называются буртовыми или фланцевыми вкладышами.

• втулки верхней головки шатуна обеспечивают вращение поршневого пальца, соединяющего поршень с шатуном.

• вкладыши распредвала поддерживают распредвал и обеспечивают его вращение. Устанавливаются в верхней части головки блока цилиндров (или в блоке цилиндров – у двигателей с нижним расположением распредвала).

Биметаллические (а) и триметаллические подшипники со свинцовистым покрытием (б, в)

Подшипники скольжения смазываются моторным маслом, постоянно подающимся к их поверхности и обеспечивающим гидродинамический режим трения.

Непосредственный контакт между трущимися в гидродинамическом режиме поверхностями отсутствует – благодаря масляной пленке, которая образуется в сходящемся зазоре (масляном клине) между поверхностями подшипника и вала.

Условия работы подшипников скольжения

Масляная пленка предотвращает локальную концентрацию нагрузки. Однако при определенных условиях гидродинамический режим трения сменяется на смешанный. Это происходит, если имеются:

• недостаточный поток масла;

• высокие нагрузки;

• низкая вязкость масла;

• перегрев масла, дополнительно снижающий его вязкость;

• высокая шероховатость поверхностей подшипника и вала;

• загрязнение масла;

• деформация и геометрические дефекты подшипника, его гнезда или вала.

В смешанном режиме трения возникает непосредственный физический контакт поверхностей, чередующийся с гидродинамическим трением. А это может привести к задирам, повышенному износу подшипника и даже к схватыванию с валом.

ДВС характеризуются циклическими нагрузками подшипников, об­условленными переменным давлением в цилиндрах и инерционными силами, вызванными движущимися частями. И эти циклические нагрузки на подшипник могут привести к его разрушению. Отсюда – высочайшие требования к материалам, из которого он производится.

Структура подшипников скольжения

Материалы подшипников скольжения

Материалы, из которых делают подшипники, должны обладать многими, иногда противоречивыми, свойствами.

• Усталостная прочность (максимальная нагрузка) – максимальная циклическая нагрузка, которую подшипник выдерживает в течение неограниченного числа циклов. Превышение этой нагрузки приводит к образованию усталостных трещин в материале.

• Сопротивление схватыванию (совместимость) – способность материала подшипника сопротивляться свариванию с материалом вала во время прямого физического контакта между ними.

• Износостойкость – способность материала подшипника сохранять свои размеры несмотря на присутствие абразивных частиц в масле, а также в условиях механического контакта с валом.

• Прирабатываемость – способность материала подшипника компенсировать небольшие геометрические дефекты вала и гнезда за счет незначительного локального износа или пластической деформации.

• Абсорбционная способность – способность материала подшипника захватывать мелкие чужеродные частицы, циркулирующие с маслом.

• Коррозионная стойкость – способность материала подшипника сопротивляться химическим воздействиям окисленных или загрязненных масел.

• Кавитационная стойкость – способность материала подшипника выдерживать ударные нагрузки, производимые схлопывающимися кавитационными пузырьками (пузырьки образуются в результате резкого падения давления в текущем масле).

Эксцентриситет подшипника скольжения

Соответственно длительная и надежная работа подшипника скольжения достигается соединением высокой прочности (усталостной прочности, износостойкости, кавитационной стойкости) с мягкостью (прирабатываемостью, сопротивлением схватыванию, абсорбционной способностью).

То есть материал должен быть одновременно и прочным, и мягким. Это звучит парадоксально, однако существующие подшипниковые материалы соединяют эти противоположные свойства – правда, с определенным компромиссом.

Для достижения этого компромисса используются композитные структуры, которые могут быть или слоистыми (мягкое покрытие, нанесенное на прочное основание) или дисперсными (мягкие частички, распределенные внутри прочной матрицы).

Биметаллические подшипники имеют стальное основание, обеспечивающее жесткость и натяг в тяжелых условиях повышенной температуры и циклических нагрузок.

Второй слой материала состоит из антифрикционного сплава. Его толщина относительно велика: она составляет около 0,3 мм. Толщина антифрикционного слоя – важная характеристика биметаллических подшипников, способных прирабатываться и приспосабливаться к относительно большим геометрическим дефектам. Биметаллический подшипник также обладает хорошей абсорбционной способностью, поглощая как мелкие, так и крупные включения в масле.

Обычно рабочий слой делают из алюминия, содержащего 6–20% олова в качестве твердого смазочного материала: именно олово обеспечивает антифрикционные свойства. Кроме этого, сплав часто содержит 2–4% кремния в виде мелких включений, распределенных в алюминии. Твердый кремний упрочняет сплав и обладает способностью полировать поверхность вала – поэтому его присутствие особенно важно при работе с валами из ковкого чугуна. Сплав может быть дополнительно упрочнен небольшими добавками меди, никеля, марганца, ванадия и других элементов.

Триметаллические подшипники, помимо стального основания, имеют промежуточный слой из медного сплава, содержащего 20–25% свинца в качестве твердой смазки и 2–5% олова для упрочнения меди.

Третий слой представляет собой покрытие на основе свинца, которое также содержит около 10% олова, повышающего коррозионную стойкость сплава и несколько процентов меди для упрочнения. Толщина покрытия составляет всего 12–20 мкм. Низкая толщина покрытия повышает его усталостную прочность, однако снижает антифрикционные свойства (прирабатываемость, абсорбционную способность, сопротивление схватыванию), особенно если мягкое покрытие было подверг­нуто износу. Между промежуточным слоем и свинцовистым покрытием наносится очень тонкий (1–2 мкм) слой никеля, служащий барьером, предотвращающим диффузию олова из покрытия в промежуточный слой.

Измерение высоты выступа стыка подшипника

Инновационные материалы для подшипников скольжения постоянно разрабатываются производителями подшипников. Это новые материалы, способные работать в тяжело нагруженных двигателях (дизельные двигатели с непосредственным впрыском топлива, двигатели с турбонаддувом), а также в гибридных и старт-стоп двигателях, в том числе:

• высокопрочные алюминиевые биметаллические материалы;

• прочные металлические покрытия для триметаллических подшипников;

• полимерные композитные покрытия, содержащие частицы твердых смазочных мате­риалов;

• бессвинцовые экологически чистые безвредные материалы.

Свойства подшипниковых материалов

Свойства материалов подшипников, характеризующие прочность и мягкость, сочетаются в различных пропорциях у разных материалов.

Отличные мягкие антифрикционные свойства триметалла ограничены толщиной покрытия (12 мкм). Если геометрический дефект или чужеродные частицы превышают толщину покрытия, ее антифрикционные свойства резко падают.

Мягкие свойства биметалла несколько ниже, чем у триметалла, однако они не ограничены толщиной покрытия, поэтому биметаллические подшипники способны прирабатываться к относительно крупным несоосностям и другим геометрическим дефектам. С другой стороны, усталостная прочность (максимальная нагрузка) биметаллических подшипников ниже (40–50 МПа), чем у триметаллических материалов (60–70 МПа). Также биметаллические подшипники без кремния хуже работают с чугунным валом.

Геометрические характеристики подшипников скольжения

Масляный зазор – это основной геометрический параметр подшипников скольжения. Он равняется разнице между внутренним диаметром подшипника и диаметром вала (внут­ренний диаметр подшипника измеряется под углом 90° к линии, разделяющей верхний и нижний вкладыши).

Величина масляного зазора – очень важный показатель. Большой зазор приводит к увеличению потока масла, что снижает его нагрев в подшипнике, однако вызывает неоднородное распределение нагрузки (она концентрируется на меньшей площади поверхности и увеличивает вероятность разрушения вследствие усталости). Также большой зазор производит значительную вибрацию и шум. А слишком маленький зазор вызывает перегрев масла и резкое падение его вязкости.

Типичные величины масляного зазора С: для пассажирских автомобилей Cмин = 0,0005D, Cмакс = 0,001D, для гоночных автомобилей Cмин = 0,00075D, Cмакс = 0,0015D (где D – диаметр вала).

Эксцентриситет является мерой, определяющей некруглость подшипника. Действительно, внутренняя поверхность подшипника не является абсолютно круглой. Она имеет форму, напоминающую лежащий на боку лимон. Это достигается за счет переменной толщины стенки подшипника, имеющей максимальное значение (Т) в центральной части и постепенно уменьшающейся в направлении стыка.

Принято измерять минимальное значение толщины (Te) на определенной высоте h для того, чтобы исключить зону выборки в области стыка. Разница между максимальным и минимальным значениями толщины называется эксцентриситетом: Т – Те.

Эксцентриситет, образованный переменной толщиной стенки вкладыша, добавляется к эксцентриситету, вызванному смещением вала относительно центра подшипника. Наличие эксцентриситета позволяет стабилизировать гидродинамический режим смазки за счет создания масляного клина с большим углом схождения. Рекомендуемые величины эксцентриситета: для пассажирских автомобилей 5–20 мкм, для гоночных автомобилей 15–30 мкм.

Посадочный натяг необходим для обеспечения надежной посадки подшипника в гнезде. Прочно посаженный подшипник имеет равномерный контакт с поверхностью гнезда – это предотвращает смещение подшипника во время работы, обеспечивает максимальный отвод тепла из области трения и увеличивает жесткость гнезда. Поэтому наружный диаметр подшипника и его периметр всегда больше диаметра гнезда и его периметра.

Поскольку прямое измерение наружного периметра подшипника – трудная задача, обычно измеряется другой параметр: высота выступа стыка (выступание). Высота выступа стыка равна разнице между наружным периметром половины подшипника и периметром половины гнезда.

Проверяемый вкладыш устанавливают в измерительный блок и прижимают с определенным усилием F, величина которого пропорциональна площади сечения стенки подшипника. Оптимальная величина высоты выступа стыка зависит от диаметра подшипника, жесткости и теплового расширения гнезда и температуры. Типичные значения высоты выступа стыка для подшипников диаметром 40–65 мм: для пассажирских автомобилей 25–50 мкм, для гоночных автомобилей 50–100 мкм.

Несмотря на самые совершенные конструкцию, материалы и технологии, в эксплуатации ДВС встречаются случаи износов и повреждений подшипников. Чтобы найти и устранить их причины, знание конструкции подшипников необходимо, но недостаточно. Об этом – в следующей статье.

Дмитрий Копелиович

Источник: https://abs-magazine.ru/article/vkladishi-dlya-dvigatelya-detali-kriticheskie

«Мягкая сила» гоночных вкладышей

Какие бывают вкладыши в двигателе?

«Мягкая сила» … звучит парадоксально, не правда ли? Обычно мы воспринимаем нечто как сильное и мощное – если оно крепкое и грубое. Почему вкладыши двигателя, особенно высококачественные не могут просто быть сильными?

Разве быть «твердыми» – это недостаточно для их продолжительной и надежной работы в условиях гонок?

Ответ на этот вопрос мог бы быть «да» – но только при одном условии: если они способны работать как идеальная часть подшипника с гидродинамической смазкой.

К сожалению, так не бывает в настоящем мире гоночных двигателей.

«Гидродинамический» вкладыш

Вкладыш шейки коленчатого вала – это важнейший элемент подшипника скольжения, работающего с гидродинамической смазкой. Таким образом, поверхность вкладыша отделена от поверхности шейки масляным «клином».

Вращающаяся шейка вала всегда смещается под нагрузкой, при этом образуется клиновидный зазор между поверхностями вкладыша и шейки, заполненный моторным маслом. Этот масляный «клин» незаменим для нормальной работы гидродинамического подшипника.

Вращение шейки вызывает нагнетание масла, по направлению вращения, при этом в клиновидном зазоре создается избыточное давление. Эта сила, созданная давлением масла, противодействует внешней силе F. Поэтому пленка масла, разделяющая поверхности вкладышей и шейки, остается стабильной, и детали подшипника не контактируют между собой.

Толщина масляной пленки зависит от величины силы F, скорости вращения вала, вязкости масла, величины масляного зазора и геометрических параметров вкладыша (диаметр и длина).

Предполагается, что идеальный гидродинамический подшипник является абсолютно жестким, его ось параллельна оси шейки вала, сама шейка имеет форму идеального цилиндра, поверхности вкладыша и шейки идеально гладкие, масло – чистое и его достаточно для гидродинамической смазки.

Вкладыши из реального мира

К сожалению, вкладыши из реального мира отличаются от идеальных вкладышей. В двигателях внутреннего сгорания нагрузка на вкладыши меняется циклически, из-за переменного давления газов в цилиндрах и инерционных сил, развивающихся за счет ускорения деталей.

Переменные нагрузки на детали могут вызвать поломку вкладыша в результате усталости материала. Пленка масла предотвращает локальную перегрузку, распределяя приложенные силы по относительно большой площади.

Однако, если давление, переданное через масляный клин вкладышу, больше, чем усталостная прочность материала, на поверхности вкладыша образуются и быстро развиваются усталостные трещины.

Еще одна особенность состоит в том, что вкладыши не абсолютно жесткие.

Силы, воздействующие на подшипники скольжения, деформируют их корпуса. Мощные двигатели обычно работают на высоких оборотах, почему значительно растут силы инерции, вызванные ускорением и замедлением деталей двигателя (например – поршня в сборе с шатуном). Инерция «растягивает» (деформирует) шатун и его отверстия по вертикальной оси.

Отверстия в блоке цилиндров также могут изменить свою форму в результате высоких нагрузок на коренные подшипники. При таких условиях масляный «клин» может поменять свою форму со «сходящейся» на «расходящуюся», что ставит под угрозу условия смазки подшипника и может привести к непосредственному контакту поверхностей шейки и вкладышей.

Кроме того, вкладыши не всегда параллельны шейке, а отверстия коренных подшипников в блоке цилиндров могут быть несоосными. Несоосность (отклонение от концентричности) и непараллельность осей также вызывают прямой контакт между вкладышами и шейками.

Действительная форма шейки вала также может отличаться от формы идеального цилиндра.

Если диаметр шейки меняется в осевом направлении, то шейка может быть: конусной, бочкообразной или как «песочные часы» (вогнутой). Вариации диаметра шейки в радиальном направлении приводят к овальности или волнам вдоль окружности шейки (вибрация при шлифовании).

Шейки вала также могут менять свою форму в результате изгиба вала, вызванного перегрузкой двигателя или крутильными колебаниями. Подобные изменения формы шейки также меняет масляный зазор, разрушая масляную пленку, разделяющую поверхности вкладыша и шейки.

Поверхности вкладышей и шейки не являются идеально гладкими. Прямой контакт деталей может быть вызван также шероховатостью поверхности шейки. Качество поверхности шейки особенно важно для гоночных подшипников, которые могут работать с малой толщиной масляной пленки.

Масло, работающее в двигателе, всегда содержит примеси и загрязнения. Твердые частицы, попавшие в масло, могут застрять между трущимися поверхностями, вызывая сухое трение и ускоряя износ материала вкладышей. Масло, вытекая из вкладыша, сливается в поддон, а утечка компенсируется маслом, подаваемым масляным насосом.

Если утечка через зазоры близка к производительности насоса или превышает ее, количество масла становится недостаточным для образования стабильного «масляного клина». В результате смазка подшипника скольжения становится полусухим или сухим, характеризующимся контактом металлов между поверхностями вкладыша и шейки. Подобные условия называются масляным голоданием.

Таким образом, подшипники в реальном двигателе работают в смешанном режиме смазки, характеризующемся периодическим контактом между поверхностями трения.

В отличие от идеального гидродинамического режима, вкладыши, работающие в режиме смешанной смазки, должны иметь определенную комбинацию свойств материала, в том числе связанные с мягкостью.

Свойства материалов вкладышей

В гоночных двигателях вкладыши работают в условиях высоких переменных нагрузок, высоких оборотов, периодического контакта деталей подшипников и при наличии загрязнений, попавших в масло.

Вот основные свойства материалов для вкладышей двигателя:

  • Нагрузочная способность (усталостная прочность) – максимальное значение циклических напряжений, которому вкладыш может противостоять, не образуя усталостных трещин после множественного числа циклов нагружения.
  • Износостойкость – способность материала вкладыша сохранять форму в условиях смешанной смазки и при наличии посторонних частиц, занесенных маслом.
  • Совместимость (устойчивость к заклиниванию) – способность материала вкладыша сопротивляться физическому соединению («свариванию») с шейкой коленвала, когда она контактирует с поверхностью вкладыша.
  • Способность к местной деформации – способность материала вкладыша приспосабливаться к несовершенствам геометрии шейки, корпуса или самого же вкладыша.
  • Способность к поглощению – свойство материала вкладыша задерживать мелкие посторонние частицы, занесенные с маслом.
  • Сопротивление коррозии – способность материала вкладыша противостоять химическому разрушению со стороны масла или веществ, которые могут загрязнить масло.
  • Сопротивление кавитации – способность материала вкладыша противостоять ударным напряжениям, вызванным схлопывающимися кавитационными пузырьками, которые образуются в результате резких локальных изменений давления в циркулирующем масле.

Усталостная прочность, износостойкость и сопротивление кавитации характеризуют прочность и твердость материала.

Совместимость (устойчивость к заклиниванию), способность к местной деформации и способность к поглощению связаны с мягкостью материала. Вкладыши двигателя должны сочетать все эти противоречивые требования, в зависимости от условий работы. Это очень сложная задача, так как одни характеристики (прочность и жесткость) плохо сочетается с другими («мягкостью»).

Структуры материалов вкладыша

Нужные качества может быть достигнуты, если материал вкладыша имеет композитную структуру.

Вкладыши для подшипников скольжения двигателя обычно выполняют из стальной ленты, на которую нанесена относительно твердая основа (сплавы на основе меди или алюминия), в сочетании с твердой смазкой: либо тонкий верхний слой, либо мелких антифрикционных частиц, распределенных по всему материалу основы.

Вкладыши с тонким верхним антифрикционным слоем называются триметаллическими, а без верхнего слоя – биметаллическими.

Конструкция типичных триметаллических и биметаллических вкладышей показана на рисунке ниже.

Ниже показана микроструктура типичного триметаллического вкладыша.

Верхний слой дает вкладышу требуемую «мягкость». Мягкие свинцовистые сплавы, обычно используемые как верхний антифрикционный слой в гоночных вкладышах, имеют великолепные совместимость (устойчивость к заклиниванию), способность к местной деформации и способность к поглощению.

Прочность обеспечивается расположенным промежуточным слоем – из освинцованной бронзы. Свинец нужен, чтобы улучшить стойкость к заклиниванию.

Триметаллические вкладыши имеют ограничение по толщине верхнего слоя, которая всегда является результатом компромисса между требуемой нагрузочной способностью и антифрикционными свойствами вкладыша.

Если верхний слой частично стерся, это увеличивает опасность заклинивания между шейкой коленвала и вскрытой бронзой промежуточного слоя.

Биметаллические вкладыши не имеют верхнего слоя; поэтому они более терпимы к величине износа.

Следующий рисунок показывает типичную микроструктуру биметаллического вкладыша.

Слой алюминиевого сплава в биметаллическом вкладыше содержит микрочастицы олова, распределенные по всей алюминиевой матрице. Олово здесь служит твердой смазкой. Сами алюминиевые сплавы обычно мягче, чем бронза в триметаллических вкладышах. Поэтому они обеспечивают хорошее совместимость (устойчивость к заклиниванию), способность к местной деформации и способность к поглощению.

Толщина алюминиевого сплава в биметаллическом вкладыше составляет около 0,30 мм. В результате он может выдержать большую деформацию и несоосность, чем триметаллический гоночный вкладыш, толщина верхнего слоя которого всего лишь 0,013 мм.

pMax Black™: усиленный материал для триметаллического вкладыша

Триметаллические вкладыши с «мягким» свинцовым верхним слоем традиционно популярны в гоночных двигателях. Однако мощность подобных двигателей значительно увеличилась за последние годы. При этом также увеличились нагрузки на вкладыши.

Помимо большей нагрузки, появилась тенденция использовать моторные масла с пониженной вязкостью, чтобы уменьшить потери мощности на трение.

Таким образом, вкладыши в современном гоночном двигателе работают при более высоких нагрузках и уменьшенной минимальной толщине масляной пленки. Нагрузочная способность и износостойкость традиционных триметаллических материалов уже не отвечает современным требованиям.

Инженеры компании King Engine Bearings решили эту проблему с помощью усиленного триметаллического материала под названием pMax Black™.

Он был разработан специально для высокофорсированных гоночных двигателей. Эта технология делает возможным образование сверхтонкой «закаленной» пленки на поверхности верхнего слоя вкладыша.

Подобная пленка значительно сокращает износ верхнего слоя и эффективно препятствует образованию усталостных трещин на поверхности вкладыша.

Стендовые эксперименты показали, что усталостная прочность верхнего слоя pMax Black™ составляет около 700 атм., что на 17 % больше, чем прочность традиционных триметаллических вкладышей (590 атм).

В то же время, сохранены все свойства «мягкого» верхнего слоя: устойчивость к заклиниванию, способности к местной деформации и поглощению. Подобные вкладыши легко узнать по темному цвету рабочей поверхности.

Важно подчеркнуть, что верхний слой pMax Black™, с его упрочненным сверхтонким верхним слоем остается значительно мягче, чем сталь или чугун. Поэтому он не вызывает повреждений поверхности шейки в случае кратковременного контакта «металла-металл».

Биметаллические гоночные вкладыши HP

Большинство алюминиевых сплавов, используемых в биметаллических вкладышах, имеют допустимое давление не более 680 атм. Поэтому их нельзя использовать в двигателях, совмещающих высокую степень форсировки нагрузки и относительно большой ресурс.

Чтобы лучше соответствовать ситуациям, в которых характерные свойства биметаллических вкладышей проявляются оптимальным образом, King Engine Bearings разработал биметаллические гоночные вкладыши серии HP.

Подобные вкладыши HP лучше всего подходят для стритрейсинга, гонок дрегстеров и, даже, для гонок на кольцевых трассах средней протяженности.

Алюминиевый сплав во вкладышах HP обеспечивает сбалансированное сочетание хорошей нагрузочной способности с хорошими способностями к поглощению и к местной деформации, что важно для удержания посторонних частиц и компенсации прогибов коленвала.

Устойчивость сплава к заклиниванию также улучшена добавкой кремния в его состав.

Источник: https://www.mehanika.ru/informatory/publications/kolonka-mastera/soft/

Вкладыши двигателя — учимся правильно подбирать | Блог автосервисов Шмид

Какие бывают вкладыши в двигателе?

Вкладыши автомобильного двигателя играют важную роль в его работе, взаимодействуя с шатуном, распределительным и коленчатым валами. За счет образующейся на его поверхности пленке масла исключается контакт металлических поверхностей деталей двигателя, что очень важно в условиях повышенной нагрузки и высоких температур.

Диагностика двигателя включает в себя, помимо прочего, и определение причин, по которым могут возникнуть поломки вкладыша. Такими причинами могут быть:

  • Постоянное давление, которому подвергается вкладыш, что может привести к появлению трещин на его поверхности.
  • Если масло загрязнено, то посторонние частицы могут поцарапать металл вкладыша и привести к быстрому износу.
  • Наоборот, низкий уровень масла в системе означает сухость вкладыша, и тогда вал за считанные часы способен непоправимо разрушить деталь.
  • Кроме того, нужно следить состоянием кислотно-щелочного баланса в картере, так как кислая среда разрушает поверхность элемента.

Следует помнить, что при высокой мощности силового агрегата все его комплектующие также подвергаются высоким нагрузкам. Вкладыши тут не исключение. Поэтому для спорткаров и форсированных моторов важно особенно внимательно выбирать эту автозапчасть.

По каким признакам можно определить, что с деталью не все ладно?

  • Об износе вкладыша может свидетельствовать низкое давление в системе подачи масла.
  • Сильный шум также подскажет, что пора менять шатунные вкладыши.

Как правильно подобрать вкладыш в зависимости от материала

Если в автосервисе установили, что требуется капитальный ремонт двигателя и пора менять вкладыши, то к их выбору стоит подойти со всей ответственностью. Прежде всего, важно выбрать деталь в зависимости от мощности мотора.

Существует несколько типов вкладышей:

  1. Алюминиевые
  2. Медные
  3. Свинцовые.

В настоящее время вкладыши выпускаются из нескольких видов материала, обычно при этом применяется литье. Алюминий применяется в моторах азиатского и азиатского производства, а европейцы предпочитают делать вкладыши из медных и свинцовых композитов, которые намного прочнее и поэтому выдерживают высокие нагрузки в дизельных моторах.

Алюминиевые сплавы применяются чаще, тому есть несколько причин. И наиболее важная состоит в том, что производители в заботе об окружающей среде пытаются исключить применение свинца в отрасли.

Так, в 1994-м стал широко использоваться сплав A-500, состоящий в основном из алюминия. Кроме того, в него добавили олово, кремний, а количество свинца уменьшили до 2 процентов.

Впоследствии, в сплаве A-590 свинец вообще убрали, при этом прочность сплава только увеличилась за счет увеличения содержания олова и кремния. Теперь этот сплав способен выдержать нагрузки как в бензиновых двигателях на высоких оборотах, так и в дизельных моторах.

Алюминий, медь, свинец: за и против

Преимущество алюминиевых вкладышей еще и в том, что они достаточно недороги и устойчивы к износу. Кроме того, алюминий в процессе работы почти не стирается и следовательно, его частицы не загрязняют масло.

Слабым местом алюминиевых вкладышей является их слишком мягкая поверхность, которая неустойчива к царапинам. Поэтому если масло загрязнено, то инородные частицы оставят борозды на металле вкладыша. Детали из меди и свинца более устойчивы к царапинам, посторонние частицы просто вязнут на них, не причиняя особого вреда.

Производители научились нивелировать этот недостаток, шлифуя поверхность вкладышей, а не раскатывая ее. При этом на поверхности детали остаются микроскопические бороздки, не влияющие на характеристики, но увеличивающие способность к поглощению загрязнения. Инородные включения оседают в них, в то же время такая поверхность лучше удерживает масляную пленку.

Еще один плюс алюминия – он выдерживает более высокие температуры плавления, чем медь или свинец. Поэтому двигатель с алюминиевым вкладышем более устойчив при перегреве, возникающем при детонации или перегрузках.

Поэтому можно с уверенностью утверждать, что вкладыши из алюминия подойдут к любому типу двигателя, конечно, при соблюдении периода замены масла. В то же время детали из сплавов свинца и меди не настолько прихотливы к очистке масла или к неровностям шеек вала.

Все же производители спорткаров по-прежнему предпочитают оснащать двигатели медно-свинцовыми элементами, поскольку они лучше алюминиевых выдерживают перегрузки.

Обычно вкладыши из меди и свинца выполняются из трех слоев. В основе лежит сталь, на которую наносят баббит слоем от 0,0125 до 0,015 миллиметров. С декоративной целью элемент могут покрыть напылением олова. Такой слой характеризуется способностью аккумулировать твердые включения и обеспечивать износоустойчивость и прочность. Деталь может спокойно выдержать давление до 25 тыс. кПа на см. кв., в то время как алюминий выдерживает только 13 тыс. кПа.

Несмотря на хорошие показатели алюминиевых и медно-свинцовых сплавов, автопроизводители продолжают эксперименты и разработки в этой области. Например, недавно выпустили вкладыш из чистой меди, с нанесением олова и никеля. Верхний слой в нем – все тот же баббит. При одинаковых характеристиках в плане прочности, такие элементы намного экологичнее, долговечнее, но цена их стала заметно выше.

Поскольку наиболее распространенной причиной поломки вкладыша называют детонацию, то подобные детали с высоким запасом прочности могут противостоять нагрузкам. Но все же не всем по карману цена таких элементов.

Еще один вариант вкладыша – сочетание алюминия с покрытием тефлоном, который придает алюминиевой поверхности дополнительную устойчивость от царапин.

Вкладыши с покрытием

Почти все спортивные автомобили сейчас имеют в двигателях вкладыши с особым покрытием от признанных марок Federal Mogul/Speed Pro и Federal Mogul/Speed Pro.

Варианты покрытий позволяют уменьшать трение и препятствовать вредному воздействию температур, уменьшать износ детали. Кроме того, дополнительно такое покрытие позволяет уберечь мотор во время холодного или сухого старта, а также защищает агрегат, если вдруг упало давление масла.

Например, известная марка Federal Mogul запустила в производство технологию Duroshield, представляющую собой полимерное основание с дисульфатом молибдена. Пленка покрытия при этом не толще 0,075 мм, но она выдерживает мощность двигателя в 3 тыс. лошадиных сил!

В основе покрытия TriArmor от марки Dana Corporation – полимерный слой, с элементами графит и молибден.

Все эти разработки и эксперименты с покрытием не были бы нужны при безупречной работе двигателя. Но законы физики никто не отменял и поэтому приходится учитывать множество влияющих на состояние мотора факторов и предусматривать все варианты защиты автомобиля.

Обычно толщину масла на вкладыше считают в пропорции 0,001 мм (с допустимым отклонением 0,0125 мм) на сантиметр диаметра шейки вала. Но при наличии покрытия необходимости соблюдения таких правил нет, так как подобный слой придает вкладышу плотное прилегание и положительно влияет на его функции.

Дороговизна покрытий вкладышей вполне себя окупает, хотя разработка и внедрение новых технологий не так проста, как считается. Даже при небольшом нарушении технологии покрытие может отслоиться и тогда вся деталь приходит в негодность.

Хорошим примером может стать случай с гонщиком Аланом Калвики из команды NASCAR, для которой американская компания Swain Coatings разработала и выпустила лимитированную серию вкладышей. Во время гонки на автомобиле Алана вышел из строя ремень, установленный на маслонасосе, тем не менее гонщик смог проехать еще пять кругов и показать достойный результат. На обычном вкладыше двигатель просто не смог бы работать.

Купить вкладыши двигателя вы можете в нашем интернет-магазине, а в слюбой СТО сети Шмид опытные мастера с легкостью выполнят его замену.

Источник: http://schmidgarage.ru/blog/magazin-avtozapchastey/vkladyshi-dvigatelya-uchimsya-pravilno-podbirat

Вкладыши шатунные: описание,причины поломки,фото,видео

Какие бывают вкладыши в двигателе?

Современный двигатель является весьма сложным устройством, состоящим из большого числа деталей. Одним из самых важных считается коленчатый вал и все связанные с ним детали, передающие энергию топлива сгорания на колёса, придавая им вращение. Составной частью коленвала являются вкладыши коренные и шатунные, которые во время работы мотора первыми приходят в движение.

Что такое шатунные вкладыши коленвала?

Как уже стало понятно из предисловия, шатунные вкладыши коленвала – это подшипники скольжения шатунов коленчатого вала, которые придают ему вращательные движения. Вращение возникает в результате микровзрывов в камерах сгорания цилиндров ДВС. Данная автомобильная система постоянно работает в условиях высоких скоростей и предельных нагрузок. Поэтому возникает острая необходимость минимизирования трения деталей, ведь в противном случае может произойти мгновенный выход двигателя из строя. Для наиболее полного снижения силы трения между деталями двигателя внутреннего сгорания, они покрываются особой маслянистой тонкой плёнкой.

Обеспечивается она благодаря системе автомобильной смазки двигателя. Плёнка появляется только в том случае, когда масло находится под достаточно сильным давлением. Вкладыши коленчатого вала и его шейка также разделены такой микроскопической масляной прослойкой. Именно благодаря такой защите сила трения сводится к минимуму настолько, настолько это возможно. Из этого можно сделать вывод, что шатунные вкладыши коленвала – это определённые защитные элементы, которые увеличивают эксплуатационный срок важнейшей части мотора автомобиля. Давайте сначала упомянем то, что их существует две категории: коренные и шатунные.

Вкладыши шатунного типа располагаются между шатунами и шейками коленчатого вала. Коренные схожи с первыми в своём эксплуатационном предназначении, но расположены на коленчатом валу в том месте, где он проходит через корпус двигателя внутреннего сгорания. Вкладыши коленвала имеют различный внутренний диаметр.

Это зависит от типа двигателей, для которых они производятся. Ремонтные вкладыши коленвала различаются между собой и, конечно же, отличаются от новых, которые установлены на автомобиль, только сошедший с конвейера. Различаются между собой ремонтные вкладыши коленвала лишь отметкой, кратной 0,25 мм.

То есть их размерный ряд по внутреннему диаметру выглядит примерно следующим образом: 0,25; 0,5; 0,75; 1 мм и т.д.

Причины поломки

Из-за высоких нагрузок данные части коленвала имеют повышенный риск поломки. Основными причинами возникающих проблем с данными элементами являются их физический износ и проворачивание. Первая считается естественной поломкой, поскольку со временем они имеют свойство стираться, это ведёт к большему ходу вала и сниженной подаче масла из-за низкого давления.

Вторая ситуация происходит потому, что пластина вкладышевого элемента слишком тонкая и при проворачивании он слипается с шейкой коленвала. Это фактически ведёт к поломке двигателя. Причины второго случая могут быть такими:

  • предельные показатели вязкости смазки, попадание в неё вредных примесей или полное отсутствие таковой;
  • плохое натяжение для поставленных подшипниковых крышек;
  • смазка слишком жидкая;
  • двигатель часто эксплуатируется в условиях регулярных перегрузок.

Всё это ведёт к поломке указанных компонентов и фактически делает невозможной эксплуатацию двигателя. Поэтому важно при обнаружении указанной неисправности заменить поломанные детали новыми и произвести их полноценную установку.

Вкладыши в двигателе установлены в специальные установочные места (постель вкладыша). Установка предполагает особую фиксацию, так как вкладыши имеют в своем теле отверстия, что позволяет подавать на них моторное масло. Указанные отверстия должны четко совпадать с отверстиями, которые высверлены в самих деталях для прохода смазки. Также фиксация вкладыша необходима с учетом того, что во время работы двигателя возникает трение по поверхностям сопряженных элементов.

С учетом вышеприведенной информации становится понятно, что если провернуло шатунный вкладыш, причина может заключаться в следующем:

  • недостаточная фиксация вкладыша;
  • сильное трение по поверхности вкладыша;

Как известно, трение возникает в результате скольжения двух тел по отношению друг к другу при наличии определенной нагрузки. Общая величина силы трения будет зависеть от величины нагрузки на трущуюся пару, а также от коэффициента трения. Для того чтобы снизить силу трения при изготовлении деталей применяются специальные антифрикционные материалы, которые имеют низкий коэффициент трения.

Что касается вкладыша, антифрикционный материал наносится на его поверхность. Коленвал по отношению к вкладышам совершает вращательное движение, в месте сопряжения вкладыша и коленчатого вала  возникает сила трения, которая стремится провернуть вкладыши по отношению к их установочным местам. Для защиты от проворачивания и смещения вкладыш удерживает специальный усик. Также при установке сами вкладыши вставляются с определенным натягом, величина которого рассчитана конструкторами того или иного ДВС.

Становится понятно, что избыточное трение или недостаточно надежная фиксация (слабый натяг), являются основными причинами, по которым не удается удержать вкладыш на его посадочном месте. Отметим, что во время изготовления двигателя на заводе недостаточный натяг вкладышей при сборке ДВС встречается крайне редко. Чаще проблемы с коренными или шатунными вкладышами появляются после того, как двигатель ремонтировался.

Другими словами, неправильный подбор ремонтных вкладышей и другие дефекты, которые не позволяют добиться необходимого натяга, приводят к проворачиванию. Так как на КШМ воздействуют неравномерные нагрузки, вкладыши с ослабленной посадкой начинают вибрировать, масляная пленка на их поверхности разрушается, вкладыш может «прихватить».

В такой ситуации проворачивание неизбежно, так как фиксирующий усик попросту не способен противостоять моменту проворачивания на самом вкладыше.

Как уже было сказано, еще одной причиной проворачивания вкладышей двигателя является превышенный момент трения, то есть нарушаются расчетные условия работы самих подшипников скольжения. Нормальная работа вкладышей предполагает так называемое жидкостное трение, то есть поверхность вкладыша и шейку коленчатого вала разделяет масляная пленка. Это позволяет избежать прямого контакта нагруженных деталей, обеспечивает необходимую смазку и охлаждение, минимизирует трение.

Вполне очевидно, что если масляная пленка будет иметь недостаточную толщину или прорвется, коэффициент трения начнет увеличиваться. Работа сопряженных деталей, которые испытывают постоянную нагрузку, в подобных условиях будет означать, что проворачивающий момент увеличился. Если проще, чем больше сила трения, тем сильнее возрастают риски проворачивания вкладышей коленвала при таких увеличенных нагрузках.

Рост нагрузок в паре вкладыш-коленвал приводит к уменьшению толщины масляной пленки или к полному разрыву (сухое трение). Параллельно увеличению силы трения происходит усиленное выделение тепла, в области трения возникают локальные перегревы.

При повышении нагрева нарушается температурная стабильность масла, толщина масляной пленки еще больше снижается, вкладыш может прихватывать к поверхности шейки коленчатого вала.

Также следует добавить, что толщина масляной пленки между сопряженными деталями напрямую зависит от того, с какой скоростью указанные детали перемещаются относительно друг друга (гидродинамическое трение). Чем быстрее детали двигаются, тем интенсивнее масло попадает в зазор, который присутствует между трущимися элементами.

Получается, создается более толстый масляный клин-пленка по сравнению с такой же пленкой на меньшей скорости движения сопряженных деталей. При этом необходимо учитывать тот факт, что увеличение скорости движения деталей увеличивает и силу трения, а также растет нагрев от такого трения.

Это значит, что температура моторного масла начинает повышаться, смазка разжижается, толщина пленки становится меньше.

Еще на силу трения оказывает влияние то, с какой точностью изготовлены поверхности сопряженных деталей, от степени шероховатости указанных поверхностей и т.д. Если, например, поверхность вкладыша или шейки окажется неровной, тогда возникнут зоны, в которых возникнет практически сухое трение или детали будут контактировать в условиях недостаточной толщины масляной пленки.  Параллельно такие зоны сухого трения могут возникать и в тех случаях, когда в моторном масле присутствуют механические частицы, то есть масло загрязнено.

По указанным причинам после сборки нового ДВС или капитального ремонта двигателя силовой агрегат должен пройти процесс обкатки, который предполагает умеренные нагрузки и частую смену моторного масла. Дело в том, что нагруженные пары должны приработаться друг к другу, так как притирка постепенно нивелирует возможные имеющиеся микродефекты, которые оказывают влияние на эффективность образования и последующую стабильность образованной масляной пленки.

Добавим, что определенное влияние оказывает и вязкость масла в двигателе. Более вязкие масла вызывают увеличенный момент трения в нагруженных парах. Параллельно с этим толщина пленки вязкого масла также больше в месте сопряжения деталей. Однако это не значит, что нагруженные детали будут защищены от повышенного или сухого трения.

Дело в том, что вязкая смазка может просто не доходить до места трения в необходимом количестве, что приводит, в свою очередь, к уменьшению толщины пленки или даже ее разрыву.

По указанной причине не так просто дать ответ, какое масло лучше применительно к вкладышам и их проворачиванию с учетом только одного показателя вязкости.

Не следует забывать о том, что важнейшей характеристикой является также смазывающая способность масла, то есть свойство смазки сцепляться с металлическими поверхностями. Следует учитывать и стабильность пленки того или иного масла в условиях различных нагрузок и температур.

Источник: https://seite1.ru/zapchasti/vkladyshi-shatunnye-opisanieprichiny-polomkifotovideo/.html

Вкладыши коленвала: неисправности и подбор новых деталей (видео)

Какие бывают вкладыши в двигателе?

Одним из важнейших элементов привычного нам ДВС является коленвал. За счет него энергию от сгорания топлива можно передать смежным элементам и обеспечить вращение колес. Ключевой момент здесь: вал вращается.

На первый взгляд ничего особенного, но любой инженер подтвердит, что работа с вращающимися элементами требует особого подхода. Ведь необходимо обеспечить вращение для вибраций, а также нагрева, обусловленного действием сил трения. В этом очень помогают вкладыши коленвала, представляющие собой полукольца с т.н.

антифрикционным покрытием. На первый взгляд, очень простая вещь, однако грамотному автолюбителя нужно знать об этих элементах коленвала все.

Об устройстве вкладышей, их неисправностях, а также методике замены вы узнаете из материала Avto.pro.

Подробнее о детали

Вкладыши по своей сути – это подшипники скольжения, в которых нуждаются шатуны, вращающие коленвал, и отдельные части самого вала. Вращение обеспечивает сгорающая в цилиндрах двигателя смесь воздуха и топлива. Разумеется, двигатель работает при больших нагрузках и стремится как можно сильнее раскрутить коленчатый вал. Проблема возможного трения деталей здесь стоит особенно остро, причем возникновение т.н.

сухого (безмасляного) трения может вывести двигатель из строя очень быстро. Решение простое: обеспечить постоянное наличие тонкой масляной пленки. Выходит, что вкладыши коленчатых валов представляют собой лишь своеобразную защиту, которая поддерживает масляную пленку в местах трения. В идеале из строя по адекватным причинам вкладыши должны выходить.

Сразу отметим, что вкладыши коленвала бывают следующие:

  • Коренные. Такие вкладыши располагают между самим валом и теми местами, в которых он проходит через корпус двигателя;
  • Шатунные. Их устанавливают между шатунами и шейками автомобильного коленвала.

Как уже было указано выше, вкладыши коленвала не похожи на классические роликовые или шариковые подшипники – они выглядят как обычные полукольца. Дело в том, что обычные подшипники не выдержат нагрузок, которые выдает силовой агрегат автомобиля. Лишь в некоторых маломощных моторах установлены подшипники качения, тем временем как наиболее распространенными являются именно подшипники скольжения. Резюмируя, назначение вкладышей коленчатого вала в следующем:

  • Обеспечить нормальную передачу сил и моментов, которые возникают при работе силового агрегата;
  • Минимизация сил трения, которые возникают в местах контакта коленвала, опор блока цилиндров, а также шатунов;
  • Центровка деталей, правильное позиционирование;
  • Распределение масла.

Здесь стоит отметить, что со временем геометрия вкладышей меняется. Сильно изношенные детали необходимо менять, но в качестве замены не всегда подходят оригинальные вкладыши, установленные еще на заводе автоконцерна. Рекомендуется установка вкладышей ремонтных размеров, толщина которых больше. Если на старый двигатель установить не ремонтные вкладыши, зазор между деталями будет слишком большим, что может вылиться к появлению стуков и интенсивному износу коленчатого вала.

Причины и признаки неисправности

Вкладыши могут выходить из строя по ряду причин. Разумеется, эксплуатационный ресурс вкладышей очень большой, так что автолюбители не так часто сталкиваются с необходимостью их замены. Но если поломка все же случилась, действовать нужно незамедлительно. Рекомендуется сразу обратиться на СТО, где двигатель сможет осмотреть специалист. Однако продлить эксплуатационный ресурс вкладышей автолюбитель может. Вот по каким причинам данные детали могут выходить из строя:

  • Попадание инородных тел;
  • Усталость металла;
  • Износ вследствие проникновения олова;
  • Коррозия поверхности;
  • Грязевая эрозия;
  • Недостаточное смазывание;
  • Эрозия из-за кавитации;
  • Несоостность.

Как видите, причин выхода из строя довольно много. Давайте рассматривать их по порядку. Касательнопервой причины: если на рабочую поверхность вкладыша попадают инородные тела или же грязь, дальнейший износ вкладыша происходит ускоренно. Строго рекомендована очистка системы и замена подшипников, если они имеют критический износ. Касательно второй: усталость может быть вызвана как длительной эксплуатацией, так и чрезмерной нагрузкой на деталь.

Стоит опасаться как установки низкокачественных вкладышей, так и недогорания топлива в камерах и неправильного тюнинга мотора. Кроме того, имеет смысл проверить форму шейки вала. Касательно третьей: если вкладыш перемещается на своем посадочном месте, в местах, где слой олова значителен, он может изнашиваться намного сильнее. Здесь рекомендован осмотр, очистные работы и корректировка.

Касательно четвертой причины: ускоренный износ детали и появление на ней следов коррозии зачастую связано с применением низкокачественного моторного масла. При этом особняком стоит выход вкладышей из строя вследствие грязевой эрозии (пятый пункт списка). На вид все просто: из-за скопления грязи на вкладышах, а в иных случаях и в области вокруг масляных отверстий, детали изнашиваются быстрее.

На деле же причин, по которым в системе появляется так много грязи, несколько. Рекомендована замена масла, а также масляных и воздушных фильтров.

Одной из самых частых причин, по которой любые вкладыши приходится менять чаще обычного, кроется в невысоком качестве смазывания (шестой пункт списка). Вследствие возникновения сухого трения вкладыши могут изнашиваться очень сильно. Рекомендуется проверить систему смазывания агрегата, а также убедиться в опор вкладышей и общей целостности вала.

Касательно седьмой причины: проверьте, нет ли в моторном масле примесей антифриза от утечки. Также имеет смысл убедиться в правильности зазоров вкладышей. В иных случаях эрозия из-за кавитация может быть вызвана частой детонацией топлива и слишком большой скоростью тока моторного масла в системе. Сам вкладыш при этом будет иметь хорошо заметные точки вымывания.

И, наконец, что касается восьмой причины: если вкладыш сильно изнашивается ближе к кромке, нужно проверить правильность расположения осей вкладышей и шейки.

Выявить поломку вкладыша зачастую удается лишь в самый последний момент. Именно по этой причине производители автомобилей рекомендуют периодически проводить диагностику двигателя, менять вкладыши, опционально производить шлифовку шеек коленчатого вала. Если вы слышите глухой металлический стук в районе двигателя, критически высока вероятность того, что его источником является вал с изношенными вкладышами. Как показала практика, стук шатунных вкладышей имеет высокую резкость и очень хорошо прослушивается, если вы удерживаете холостые обороты и затем резко подгазовываете.

Немного о подборе вкладышей

Самостоятельный подбор вкладышей – довольно рисковое дело, так как вероятность выбрать деталь, которая не вполне подходит к коленвалу вашего автомобиля, будет сложно. Дело в том, что потенциальному покупателю важно учитывать не только совместимость запчасти с автомобилем, но еще и состояние некоторых его узлов.

В данном случае речь идет об коленчатом вале, который еще и придется отшлифовать. Так что без обращения к эксперту, который разберет двигатель и проведет диагностику, зачастую не обойтись. Вполне вероятно, что придется устанавливать ремонтные вкладыши большой толщины.

Такие детали можно искать по следующим параметрам:

  • Данные автомобиля;
  • VIN-код;
  • Код подходящего вкладыша.

Проще всего вести поиски в каталогах интернет-магазинов. Там автолюбитель сможет, к примеру, найти оригинальные вкладыши и, отталкиваясь от них, подобрать ремонтные. Если старые вкладыши просто износились по причине длительной эксплуатации и значительных нагрузок, есть вероятность того, что дефектовка коленчатого вала не потребуется. Из этого следует, что подходящие вкладыши будет подобрать несколько проще.

Если вы хотите выполнить как можно более значительный объем работ самостоятельно, то для начала вам придется определить показатель зазора. Для этого нужен динамометрический ключ и специальная калибровочная проволока. Если зазор большой, это говорит о необходимости расточки вала и дальнейшей установки ремонтных вкладышей. Работу с валом можно доверить исключительно профессионалам. Размер подходящих вкладышей можно определить микрометром. В технических руководствах тоже можно найти полезную для поиска вкладышей информацию.

Вывод

Вкладыши коленчатого вала – простые и, на первый взгляд, невероятно живучие элементы современных двигателей. Практика успела показать, что с необходимостью замены вкладышей за весь период пользования автомобилем приходится сталкиваться один-два раза.

Но не стоит думать, что это именно та деталь, которая не должна ломаться. Напротив, вкладыши иногда называют защитными элементами коленчатого вала, так как они одними из первых принимают на себя удар. Если вы столкнулись с необходимостью замены вкладышей, ни в коем случае не медлите.

Обратитесь к специалисту по двигателям и доверьте все ему, или же попытайтесь сделать часть работы самостоятельно.

С полной версией статьи можете ознакомиться здесь

Источник: https://zen.yandex.ru/media/id/5c7d2c2eeada0500b2d920cf/5d0a217dc3aa9500ae365315

Вкладыши шатунные – что это

Какие бывают вкладыши в двигателе?

При работе двигателя шатун вращает коленчатый вал, который, в свою очередь, вращает маховик. Для обеспечения минимального трения и минимального износа в узле используется вкладыш шатунный. Это подшипник скольжения.

Назначение

Вкладыши коленчатого вала применяются, чтобы обеспечить возможность вращения коленвала. Процесс вращения происходит в результате сгорания в цилиндрах ДВС топливно-воздушной смеси. Трение, которое вызывается усиленными нагрузками, высокими скоростями, может стать причиной выхода двигателя из строя. Чтобы предотвратить эту ситуацию и снизить трение, составные элементы покрываются тончайшей пленкой смазочного материала. Слоем масла покрыт и вкладыш шатунный вместе с шейкой вала. Так подшипник позволяет снизить трение.

Устройство

В отличие от коренных подшипников, вкладыши шатуна работают в более нагруженных условиях. Деталь состоит из двух половин — металлических полуколец. Верхняя половина подвержена непродолжительным, однако очень значительным нагрузкам. Нижняя половина детали воспринимает на себе более длительные нагрузки от силы инерции поступательного движения и вращающихся масс.

Вкладыш шатунный — это тонкостенные металлические полукольца из стальной полосы со специальным антифрикционным покрытием. Вкладыш устанавливается в головку шатуна с определенным натягом. Он создается за счет того, что дуга элемента удлиняется на расстояние сжатия по периметру постели.

Материалы

Вкладыш представляет собой стальную полосу с нанесенным на нее антифрикционным покрытием. В качестве этого покрытия применяются различные сплавы, в основе которых лежит медь, алюминий, свинец. Сплавы на основе алюминия и меди равноценные по несущим характеристикам, но сплавы алюминия и олова быстрее приработаются к шейке вала, меньше подвержены износу, меньше изнашивают шейку, имеют меньшую чувствительность к качеству масла.

В дизельных моторах применяют вкладыши на основе стали и алюминия. В качестве антифрикционного материала чаще выступают такие сплавы, как А020, А06. В карбюраторных бензиновых силовых агрегатах применяют сплавы АМО1-20 с промежуточным слоем из чистого алюминия. В большегрузных КамАЗах используются вкладыши шатунные из стали и бронзы. В качестве антифрикционного слоя примется сплав БрС30.

Детали, изготавливаемые из прочных материалов, дополнительно имеют очень тонкий слой свинца и олова. Слой, несмотря на толщину всего 0,02 миллиметра, позволяет значительно улучшить приспосабливаемость вкладыша к дефектам и деформациям шейки вала и лучше поглощать абразивные частицы. Повышается усталостная прочность базового антифрикционного покрытия.

Особенности маркировки

Если детали подшипника изношены или повреждены, когда не получается получить правильный зазор коленвала, ситуацию можно улучшить путем подбора новых вкладышей. Если шатуны растачивались, то они должны быть укомплектованы деталями соответствующих ремонтных размеров шатунных вкладышей. Обычно подбор доверяют специалистам.

При выборе новых шатунных подшипников ориентируются на маркировку по цветам — нужно смотреть на те детали, которые сняты с автомобиля. Если на элементах старых подшипников не сохранилось цветовой маркировки, то ищут ее на нижних головках. Там нужно увидеть метку в виде цифры — это класс подшипника. Также проверяют буквенные метки на коленчатом валу — они определяют размеры шатунных шеек.

Чтобы ориентироваться в карте выбора подшипников, используют маркировку на блоке цилиндров. Например, С3 говорит о том, что нужно устанавливать желтый и зеленый вкладыш. При этом любой из них может быть установлен в крышку или в постель. При выборе новых подшипников пользуются идентификационной цветовой картой маркировки шатунных вкладышей. Так, если найти букву на шейке шатуна и цифру на шатуне (например, D4), то по этой карте нужен подшипник синего цвета. Естественно, нужно помнить, что для разных двигателей цвета могут быть другими.

Особенности замены, момент затяжки

Вначале проверяют зазор между коленчатым валом и вкладышем. Проверить его можно калибровочной проволокой. Далее монтируют крышку шатуна с вкладышем. Крышка должна устанавливаться строго на тот шатун, с которого она снималась в процессе разборки и дефектовки двигателя. Далее нужно затянуть крышки.

Момент затяжки шатунных вкладышей меньше, чем для коренных. На примере двигателя ВАЗ-2108: крышку затягивают с усилием от 43 до 53 Нм. На «Приоре» шатунные подшипники затягивают с усилием в 43,3-53,5 Нм.